miércoles, 3 de abril de 2013

Leyes de la Genetica

La genética es el campo de la biología que busca comprender la herencia biológica que se transmite de generación en generación.
El estudio de la genética permite comprender qué es lo que exactamente ocurre en el ciclo celular, (replicar nuestras células) y reproducción, (meosis) de los seres vivos y cómo puede ser que, por ejemplo, entre seres humanos se transmiten características biológicas genotipo (contenido del genoma específico de un individuo en forma de ADN), características físicas fenotio, de apariencia y hasta de personalidad.
El principal objeto de estudio de la genética son los genes, formados por segmentos de ADN (doble hebra) y ARN (hebra simple), tras la transcripción de ARN mensajero, ARN ribosómico y ARN de transferencia, los cuales se sintetizan a partir de ADN. El ADN controla la estructura y el funcionamiento de cada célula, con la capacidad de crear copias exactas de sí mismo, tras un proceso llamado replicato, en el cual el ADN se replica.
En 1865 un monje científico checo-alemán llamado Gregor Johann Mendel observó que los organismos heredan caracteres de manera diferenciada. Estas unidades básicas de la herencia son actualmente denominadas genes.
En 1941 Edward LawrieTatum y George Wells Beadle demuestran que los genes [ARN-mensajero] codifican proteínas; luego en 1953 James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice en direcciones antiparalelas, polimerizadas en dirección 5' a 3', para el año 1977 Fred Sanger, Walter Gilbert, y Allam Maxan secuencian ADN completo del genoma del bacteriofago y en 1990 se funda el Proyecto Geoma Humano.

Cronología de descubrimientos notables
Año
Acontecimiento
1865
Se publica el trabajo de Gregor Mendel
Los botánicos Hugo de VriesCarl Correns y Erich von Tschermak se descubren el trabajo de Gregor Mendel
Se descubre la implicación de los cromosomas en la herencia
El biólogo británico William Bateson acuña el término "Genetics" en una carta a Adam Sedgwick
Thomas Hunt Morgan demuestra que los genes residen en los cromosomas. Además, gracias al fenómeno de recombinación genética consiguió describir la posición de diversos genes en los cromosomas.
Alfred Sturtevant crea el primer mapa genético de un cromosoma
Ronald Fisher publica On the correlation between relatives on the supposition of Mendelian inheritance —la síntesis moderna comienza.
Los mapas genéticos demuestran la disposición lineal de los genes en los cromosomas
Se denomina mutación a cualquier cambio en la secuencia nucleotídica de un gen, sea esta evidente o no en el fenotipo
Fred Griffith descubre una molécula hereditaria transmisible entre bacterias (véase Experimento de Griffith)
El entrecruzamiento es la causa de la recombinacion
Edward Lawrie Tatum y George Wells Beadle demuestran que los genes codifican proteínas; véase el dogma central de la Biología
Oswald Theodore Avery, Colin McLeod y Maclyn McCarty demuestran que el ADN es el material genético (denominado entonces principio transformante)
Erwin Chargaff demuestra que las proporciones de cada nucleótido siguen algunas reglas (por ejemplo, que la cantidad de adenina, A, tiende a ser igual a la cantidad de timina, T). Barbara McClintock descubre los transposones en el maíz
El experimento de Hershey y Chase demuestra que la información genética de los fagos reside en el ADN
James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice
Jo Hin Tjio y Albert Levan establecen que, en la especie humana, el número de cromosomas es 46
El experimento de Meselson y Stahl demuestra que la replicacion del ADN es replicación semiconservativa
El código genético está organizado en tripletes
Howard Temin demuestra, empleando virus de ARN, excepciones al dogma central de Watson
Se descubren las enzimas de restricción en la bacteria Haemophilius influenzae, lo que permite a los científicos manipular el ADN
El estudio de linajes celulares mediante análisis clonal y el estudio de mutaciones homeóticas condujeron a la teoría de los compartimientos propuesta por Antonio García-Bellino et al. Según esta teoría, el organismo está constituido por compartimentos o unidades definidas por la acción de genes maestros que ejecutan decisiones que conducen a varios clones de células hacia una línea de desarrollo.
Fred Sanger, Walter Gilbert, y Allan Maxam, secuencian ADN por primera vez trabajando independientemente. El laboratorio de Sanger completa la secuencia del genoma del bacteriófagoΦ-X174
Kary Banks Mullis descubre la reaccion en cadena de la  polimerasa, que posibilita la amplificación del ADN
Francis Collins y Lap-Chee Tsui secuencian un gen humano por primera vez. El gen codifica la proteína CFTR, cuyo defecto causa fibrosis quística
Se funda el Proyecto Genoma Humano por parte del Departamento de Energía y los Institutos de la Salud de los Estados Unidos
El genoma de Haemophilus influenzae es el primer genoma secuenciado de un organismo de vida libre
Se da a conocer por primera vez la secuencia completa de un eucariota, la levadura Saccharomyces cerevisiae
Se da a conocer por primera vez la secuencia completa de un eucariota pluricelular, el nematodo Caenorhabditis elegans
El Proyecto Genoma Humano y Celera Genomics presentan el primer borrador de la secuencia del genoma humano
(14 de Abril) Se completa con éxito el Proyecto Genoma Humano con el 99% del genoma secuenciado con una precisión del 99,99%

Importancia de la genética
El conocimiento en genética ha permitido la mejora extensa en productividad de plantas usadas para el alimento como por ejemplo el arroz, trigo, y el maíz. El conocimiento genético también ha sido un componente dominante de la revolución en salud y asistencia médica en este siglo.
La genética tiene también una gran importancia de la bioingenería, ya que ha permitido modificar el material genético de distintos organismos.
Los avances en éste campo han permitido también la alteración de diversos segmentos del ADN, resultando en la creación de nuevos genes y rasgos genéticos y logrando también evitar malformaciones genéticas. En el área de la salud ha permitido el tratamiento y prevención de la reaparición del síndrome de Down. La bioingeniería ofrece la esperanza de crear antibióticos más eficaces, además de descubrir una hormona del crecimiento para combatir el enanismo. Sin duda, la genética juega un papel muy importante en la evolución de la especie y la erradicación de enfermedades genéticas.

LEYES DE MENDEL
Las Leyes de Mendel son el conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Estas reglas básicas de herencia constituyen el fundamento de la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, aunque fue ignorado por mucho tiempo hasta su redescubrimiento en 1900.
La historia de la ciencia encuentra en la herencia mendeliana un hito en la evolución de la biología sólo comparable con las Leyes de Newton en el desarrollo de la Física. Tal valoración se basa en el hecho de que Mendel fue el primero en formular con total precisión una nueva teoría de la herencia, expresada en lo que luego se llamaría "Leyes de Mendel", que se enfrentaba a la poco rigurosa teoría de la herencia por mezcla de sangre. Esta teoría aportó a los estudios biológicos las nociones básicas de la genética moderna.
No obstante, no fue sólo su trabajo teórico lo que brindó a Mendel su envergadura científica a los ojos de la posteridad; no menos notables han sido los aspectos epistemológicos y metodológicos de su investigación. El reconocimiento de la importancia de una experimentación rigurosa y sistemática, y la expresión de los resultados observacionales en forma cuantitativa mediante el recurso a la estadistica ponían de manifiesto una postura epistemológica totalmente novedosa para la biología de la época. Por esta razón, la figura de Mendel suele ser concebida como el ejemplo paradigmático del científico que, a partir de la meticulosa observación libre de prejuicios, logra inferir inductivamente sus leyes, que en el futuro constituirían los fundamentos de la genética. De este modo se ha integrado el trabajo de Mendel a la enseñanza de la biología: en los textos, la teoría mendeliana aparece constituida por las famosas dos leyes, concebidas como generalizaciones inductivas a partir de los datos recogidos a través de la experimentación.

1ª Ley de Mendel: Ley de la uniformidad
Establece que si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí fenotípica y genotípicamente, e iguales fenotípicamente a uno de los progenitores (de genotipo dominante), independientemente de la dirección del cruzamiento. Expresado con letras mayúsculas las dominantes (A = amarillo) y minúsculas las recesivas (a = verde), se representaría así: AA + aa = Aa, Aa, Aa, Aa.
2ª Ley de Mendel: Ley de la segregación
Esta ley establece que durante la formación de los gametos, cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridacion mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuo heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1). Aa + Aa = AA + Aa + Aa + aa
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación. Para cada característica, un organismo hereda dos alelos, uno de cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigotos o heterocigotos.
En palabras del propio Mendel: "Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de éstos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número. Gregor Mendel
3ª Ley de Mendel: Ley de la recombinación independiente de los factores
En ocasiones es descrita como la 2ª Ley. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por lo tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (es decir, que están en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. En este caso la descendencia sigue las proporciones 9:3:3:1. Representándolo con letras, de padres con dos características AALL y aall (donde cada letra representa una característica y la dominancia por la mayúscula o minúscula), por entrecruzamiento de razas puras (1era Ley), aplicada a dos rasgos, resultarían los siguientes gametos: AL + al =AL, Al, aL, al. Al intercambiar entre estos cuatro gametos, se obtiene la proporción 9:3:3:1 AALL, AALl, AAlL, AAll, AaLL, AaLl, AalL, Aall, aALL, aALl, aAlL, aAll, aaLL, aaLl, aalL, aall . Como conclusión tenemos: 9 con "A" y "L" dominantes, tres con "a" y "L", tres con "A" y "l" y una con genes recesivos "aall"
En palabras del propio Mendel: Por tanto, no hay duda de que a todos los caracteres que intervinieron en los experimentos se aplica el principio de que la descendencia de los híbridos en que se combinan varios caracteres esenciales diferentes, presenta los términos de una serie de combinaciones, que resulta de la reunión de las series de desarrollo de cada pareja de caracteres diferenciales.

Patrones de la herencia mendeliana
Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendecia , los dominantes y los recesivos, pero existe otro factor a tener en cuenta en organismos diocios y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X (XX) mientras los masculinos tienen un cromosoma X y uno Y (XY), con lo cual quedan conformados cuatro modos o "patrones" según los cuales se puede trasmitir una mutacion simple:
·         Gen dominante ubicado en un autosoma (herencia autosómica dominante).
·         Gen recesivo ubicado en un autosoma (herencia autosómica recesiva).
·         Gen dominante situado en el cromosoma X (herencia dominante ligada al cromosoma X).
·         Gen recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X).


Experimentos


Los siete caracteres que observó G. Mendel en sus experiencias genéticas con los guisantes.
      Mendel publicó sus experimentos con guisantes en 1865 y 1866. A continuación se describen las principales ventajas de la elección de Pisum sativum como organismo modelo: su bajo coste, tiempo de generación corto, elevado índice de descendencia, diversas variedades dentro de la misma especie (color, forma, tamaño, etc.). Además, reúne características típicas de las plantas experimentales, como poseer caracteres diferenciales constantes.
Pisum sativum es una planta autógama, es decir, se autofecunda. Mendel lo evitó emasculándola  (eliminando las anteras). Así pudo cruzar exclusivamente las variedades deseadas. También embolsó las flores para proteger a los híbridos de polen no controlado durante la floración. Llevó a cabo un experimento control realizando cruzamientos durante dos generaciones sucesivas mediante autofecundacion para obtener líneas puras para cada carácter.
Mendel llevó a cabo la misma serie de cruzamientos en todos sus experimentos. Cruzó dos variedades o líneas puras diferentes respecto de uno o más caracteres. Como resultado obtenía la primera generación filial (F1), en la cuál observó la uniformidad fenotípica de los híbridos. Posteriormente, la autofecundación de los híbridos de F1 dio lugar a la segunda generación filial (F2), y así sucesivamente. También realizó cruzamiento recíprocos, es decir, alternaba los fenotipos de las plantas parentales:
♀P1 x ♂P2
♀P2 x ♂P1
(siendo P la generación parental y los subíndices 1 y 2 los diferentes fenotipos de ésta).
Además, llevó a cabo retrocruzamientos, que consisten en el cruzamiento de los híbridos de la primera generación filial (F1) por los dos parentales utilizados, en las dos direcciones posibles:
♀F1 x ♂P2 y ♀P2 x ♂F1 (cruzamientos recíprocos)
♀F1 x ♂P1 y ♀P1 x ♂F1 (cruzamientos recíprocos)
Los experimentos demostraron que: La herencia se transmite por elementos particulados (refutando, por tanto, la herencia de las mezclas).                                                                                                                                    Siguen normas estadísticas sencillas, resumidas en sus dos principios.


Aplicación de las leyes de Mendel en la resolución de problemas sobre cruces monohibridos
Para aplicar el cuadro de punnet analicemos primero el caso del cruce de plantas homocigotas o puras de arveja con semillas amarillas dominantes AA y plantas puras con semillas verdes recesivas aa (caso de cruce monohíbrido, o sea aplicado a un solo carácter en este caso color de la semilla)

Se elabora una tabla o cuadro con tres columnas y tres filas (cuadro de Punnet):
En las celdas horizontales de color negro, van los alelos o genes aportados por el padre (en este ejemplo el padre tiene un par de genes AA para el color de la semilla) pero cada gameto solo recibe un gen para ese carácter por parte del padre.
Entonces se coloca un gen A por cada celda, o sea, un gen para la formación de cada gameto en el cruce.
Esto se explica de acuerdo con la ley de la segregación Un par de genes es segregado (separado) en la formación de los gametos.
En las celdas verticales negras se colocan los alelos o genes que aportará la madre a los gametos. De igual manera se cumple la ley de la segregación. Entonces en cada celda se coloca un solo gen:
Las celdas de color blanco corresponden a los gametos de los hijos que se formarán en el cruce donde se restablecerá el número par de genes para cada gameto
Ejemplo: Si se cruzan semillas homocigotas amarillas dominantes AA con semillas verdes homocigotas recesivas aa, o sea que tenemos el caso
AA x aa
En las celdas blancas se formarán los gametos resultantes del cruce o sea la combinación o entrecruzamiento de los genes aportados por el padre y la madre para ese carácter (se combina el gen de la primera celda horizontal con el gen de la primera celda vertical). 
En este momento se restablece el número par de genes en lo gametos formados (uno de cada progenitor)

El resultado del cruce será:

Genotipo: 100 % Heterocigoto Aa
Fenotipo: 100% Semilla de color amarillo. (Ser puede explicar por la ley de ladominancia: un gen del par determina la expresión fenotípica y enmascara al otro;
El polen de la planta progenitora aporta a la descendencia un alelo o gen para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquél que es dominante (A), mientras que el recesivo (a) permanece oculto.
Otro ejemplo. Si se toman semillas heterocigotas lisas Ll y se cruzan con semillas homocigotas rugosas ll.
Ll x ll siguiendo el anterior procedimiento:
El resultado del cruce será
Genotipo: 50 % Heterocigoto Ll
Fenotipo: 50% semilla de forma lisa y 50% de semillas rugosas.
Interpretación de las leyes de Mendel - Ejemplos de Cruces
Primera ley de Mendel o Ley de la uniformidad de la primera generación filial (F1) o Ley de la Dominancia
Cuando se aparean o cruzan organismos (fecundación) de raza pura (homocigotos) para un determinado carácter , todos los individuos de la primera generación son iguales.
imagen tomada de http://www.biotech.bioetica.org/ap1.htm
Ejemplo: Si se cruzan arvejas amarillas AA con arvejas verdes aa toda la F1 resultante del cruce será Aa de color amarillo. Aparece aquí el concepto de Dominancia y Recesividad.
Las arvejas amarillas AA son dominantes sobre las arvejas verdes aa recesivas. La primera generación o F1 es fenotípicamente amarilla y genotipícamente heterocigota Aa

imagen tomada de http://www.biotech.bioetica.org/ap1.htm
Codominancia: La primera ley de Mendel se cumple también para el caso en que un determinado gen de lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche" (Mirabilis jalapa). Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas. La interpretación es la misma que en el caso anterior, solamente varía la manera de expresarse los distintos alelos
La segunda ley de Mendel también llamada de la separación o segregación o disyunción de los alelos

imagen tomada de http://www.biotech.bioetica.org/ap1.htm
El experimento de Mendel: Mendel tomó plantas procedentes de las semillas de la primera generación del experimento anterior Aa y las polinizó entre sí. Del cruce Aa x Aa obtuvo semillas amarillas y verdes en la proporción 3:1. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunada generación.
Interpretación del experimento.
Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos.
Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos
Retrocruzamiento

imagen tomada de http://www.biotech.bioetica.org/ap1.htm
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.

La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa). Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel. Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%
Tercera ley de Mendel o de la herencia independiente de caracteres:




imagen tomada de http://www.biotech.bioetica.org/ap1.htm

Hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
El experimento de Mendel: Mendel cruzó plantas de guisantes de semilla amarilla AA y lisa BB con plantas de semilla verde aa y rugosa bb(Homocigóticas ambas para los dos caracteres
Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Segunda generación filial F2

imagen tomada de http://www.biotech.bioetica.org/ap1.htm
Se cruzan entre sí plantas de la F1, teniendo en cuenta los gametos que formarán cada una de las plantas
Los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).

imagen tomada de http://www.biotech.bioetica.org/ap1.htm
Interpretación del experimento: Los resultados de los experimentos de la tercera ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación trás generación. Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. No se cumple cuando los dos genes considerados se encuentran en un mismo cromosoma, es el caso de los genes ligados.